Datasets
Contents
Datasets#
The following example tables come with the Plotly package.
import plotly.express as px
election#
px.data.election().tail(10)
district | Coderre | Bergeron | Joly | total | winner | result | district_id | |
---|---|---|---|---|---|---|---|---|
48 | 71-Tétreaultville | 3694 | 2589 | 3454 | 9737 | Coderre | plurality | 71 |
49 | 72-MaisonneuveLongue-Pointe | 2746 | 3250 | 3139 | 9135 | Bergeron | plurality | 72 |
50 | 73-Hochelaga | 1546 | 3679 | 2675 | 7900 | Bergeron | plurality | 73 |
51 | 74-Louis-Riel | 3509 | 2178 | 2338 | 8025 | Coderre | plurality | 74 |
52 | 81-Marie-Clarac | 6591 | 1085 | 1435 | 9111 | Coderre | majority | 81 |
53 | 82-Ovide-Clermont | 6229 | 780 | 1051 | 8060 | Coderre | majority | 82 |
54 | 91-Claude-Ryan | 996 | 643 | 423 | 2062 | Coderre | plurality | 91 |
55 | 92-Joseph-Beaubien | 540 | 833 | 592 | 1965 | Bergeron | plurality | 92 |
56 | 93-Robert-Bourassa | 446 | 465 | 419 | 1330 | Bergeron | plurality | 93 |
57 | 94-Jeanne-Sauvé | 491 | 698 | 489 | 1678 | Bergeron | plurality | 94 |
experiment#
px.data.experiment().tail(10)
experiment_1 | experiment_2 | experiment_3 | gender | group | |
---|---|---|---|---|---|
90 | 100.177493 | 104.673700 | 73.250996 | male | treatment |
91 | 108.151672 | 137.994359 | 105.054792 | female | treatment |
92 | 101.320525 | 105.711291 | 73.730844 | male | control |
93 | 99.177558 | 88.570729 | 78.655041 | female | control |
94 | 102.770625 | 129.002274 | 52.111122 | male | treatment |
95 | 108.156964 | 105.971541 | 64.524029 | female | treatment |
96 | 91.739992 | 111.125377 | 64.260993 | male | control |
97 | 95.410347 | 84.448322 | 75.505991 | female | control |
98 | 106.362406 | 115.522382 | 123.469689 | male | treatment |
99 | 94.269237 | 104.651064 | 92.387490 | female | treatment |
gapminder#
px.data.gapminder().tail(10)
country | continent | year | lifeExp | pop | gdpPercap | iso_alpha | iso_num | |
---|---|---|---|---|---|---|---|---|
1694 | Zimbabwe | Africa | 1962 | 52.358 | 4277736 | 527.272182 | ZWE | 716 |
1695 | Zimbabwe | Africa | 1967 | 53.995 | 4995432 | 569.795071 | ZWE | 716 |
1696 | Zimbabwe | Africa | 1972 | 55.635 | 5861135 | 799.362176 | ZWE | 716 |
1697 | Zimbabwe | Africa | 1977 | 57.674 | 6642107 | 685.587682 | ZWE | 716 |
1698 | Zimbabwe | Africa | 1982 | 60.363 | 7636524 | 788.855041 | ZWE | 716 |
1699 | Zimbabwe | Africa | 1987 | 62.351 | 9216418 | 706.157306 | ZWE | 716 |
1700 | Zimbabwe | Africa | 1992 | 60.377 | 10704340 | 693.420786 | ZWE | 716 |
1701 | Zimbabwe | Africa | 1997 | 46.809 | 11404948 | 792.449960 | ZWE | 716 |
1702 | Zimbabwe | Africa | 2002 | 39.989 | 11926563 | 672.038623 | ZWE | 716 |
1703 | Zimbabwe | Africa | 2007 | 43.487 | 12311143 | 469.709298 | ZWE | 716 |
iris#
px.data.iris().tail(10)
sepal_length | sepal_width | petal_length | petal_width | species | species_id | |
---|---|---|---|---|---|---|
140 | 6.7 | 3.1 | 5.6 | 2.4 | virginica | 3 |
141 | 6.9 | 3.1 | 5.1 | 2.3 | virginica | 3 |
142 | 5.8 | 2.7 | 5.1 | 1.9 | virginica | 3 |
143 | 6.8 | 3.2 | 5.9 | 2.3 | virginica | 3 |
144 | 6.7 | 3.3 | 5.7 | 2.5 | virginica | 3 |
145 | 6.7 | 3.0 | 5.2 | 2.3 | virginica | 3 |
146 | 6.3 | 2.5 | 5.0 | 1.9 | virginica | 3 |
147 | 6.5 | 3.0 | 5.2 | 2.0 | virginica | 3 |
148 | 6.2 | 3.4 | 5.4 | 2.3 | virginica | 3 |
149 | 5.9 | 3.0 | 5.1 | 1.8 | virginica | 3 |
medals#
px.data.medals_long()
nation | medal | count | |
---|---|---|---|
0 | South Korea | gold | 24 |
1 | China | gold | 10 |
2 | Canada | gold | 9 |
3 | South Korea | silver | 13 |
4 | China | silver | 15 |
5 | Canada | silver | 12 |
6 | South Korea | bronze | 11 |
7 | China | bronze | 8 |
8 | Canada | bronze | 12 |
px.data.medals_wide()
nation | gold | silver | bronze | |
---|---|---|---|---|
0 | South Korea | 24 | 13 | 11 |
1 | China | 10 | 15 | 8 |
2 | Canada | 9 | 12 | 12 |
stocks#
px.data.stocks().tail(10)
date | GOOG | AAPL | AMZN | FB | NFLX | MSFT | |
---|---|---|---|---|---|---|---|
95 | 2019-10-28 | 1.155603 | 1.461829 | 1.457474 | 1.036232 | 1.365827 | 1.629663 |
96 | 2019-11-04 | 1.189743 | 1.486514 | 1.452951 | 1.021354 | 1.388495 | 1.655063 |
97 | 2019-11-11 | 1.211063 | 1.518629 | 1.415209 | 1.044153 | 1.404972 | 1.700533 |
98 | 2019-11-18 | 1.175199 | 1.495886 | 1.420278 | 1.064062 | 1.478547 | 1.696224 |
99 | 2019-11-25 | 1.183927 | 1.527143 | 1.465089 | 1.079154 | 1.498452 | 1.716521 |
100 | 2019-12-02 | 1.216280 | 1.546914 | 1.425061 | 1.075997 | 1.463641 | 1.720717 |
101 | 2019-12-09 | 1.222821 | 1.572286 | 1.432660 | 1.038855 | 1.421496 | 1.752239 |
102 | 2019-12-16 | 1.224418 | 1.596800 | 1.453455 | 1.104094 | 1.604362 | 1.784896 |
103 | 2019-12-23 | 1.226504 | 1.656000 | 1.521226 | 1.113728 | 1.567170 | 1.802472 |
104 | 2019-12-30 | 1.213014 | 1.678000 | 1.503360 | 1.098475 | 1.540883 | 1.788185 |
tips#
px.data.tips().tail(10)
total_bill | tip | sex | smoker | day | time | size | |
---|---|---|---|---|---|---|---|
234 | 15.53 | 3.00 | Male | Yes | Sat | Dinner | 2 |
235 | 10.07 | 1.25 | Male | No | Sat | Dinner | 2 |
236 | 12.60 | 1.00 | Male | Yes | Sat | Dinner | 2 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 |
239 | 29.03 | 5.92 | Male | No | Sat | Dinner | 3 |
240 | 27.18 | 2.00 | Female | Yes | Sat | Dinner | 2 |
241 | 22.67 | 2.00 | Male | Yes | Sat | Dinner | 2 |
242 | 17.82 | 1.75 | Male | No | Sat | Dinner | 2 |
243 | 18.78 | 3.00 | Female | No | Thur | Dinner | 2 |
wind#
px.data.wind().tail(10)
direction | strength | frequency | |
---|---|---|---|
118 | SE | 6+ | 0.05 |
119 | SSE | 6+ | 0.05 |
120 | S | 6+ | 0.05 |
121 | SSW | 6+ | 0.10 |
122 | SW | 6+ | 0.10 |
123 | WSW | 6+ | 0.10 |
124 | W | 6+ | 0.90 |
125 | WNW | 6+ | 2.20 |
126 | NW | 6+ | 1.50 |
127 | NNW | 6+ | 0.20 |
other data#
Also check out these resources:
https://github.com/plotly/datasets