Datasets
The following example tables are included with the Plotly package.
carshare
Here we show the last 10 rows of the carshare dataset by first loading the data into a variable called car_data and then using the tail method to show the last 10 rows.
  
    
       | 
      centroid_lat | 
      centroid_lon | 
      car_hours | 
      peak_hour | 
    
  
  
    
      | 239 | 
      45.570923 | 
      -73.577155 | 
      898.000000 | 
      10 | 
    
    
      | 240 | 
      45.533611 | 
      -73.601066 | 
      701.666667 | 
      11 | 
    
    
      | 241 | 
      45.522280 | 
      -73.568434 | 
      873.166667 | 
      21 | 
    
    
      | 242 | 
      45.570443 | 
      -73.525182 | 
      235.416667 | 
      7 | 
    
    
      | 243 | 
      45.486260 | 
      -73.638602 | 
      998.666667 | 
      18 | 
    
    
      | 244 | 
      45.547171 | 
      -73.556258 | 
      951.416667 | 
      3 | 
    
    
      | 245 | 
      45.546482 | 
      -73.574939 | 
      795.416667 | 
      2 | 
    
    
      | 246 | 
      45.495523 | 
      -73.627725 | 
      425.750000 | 
      8 | 
    
    
      | 247 | 
      45.521199 | 
      -73.581789 | 
      1044.833333 | 
      17 | 
    
    
      | 248 | 
      45.532564 | 
      -73.567535 | 
      694.916667 | 
      5 | 
    
  
  
 
For the remainder of the datasets, we will use the tail method directly on the px.data object for brevity.
election
  
    
       | 
      district | 
      Coderre | 
      Bergeron | 
      Joly | 
      total | 
      winner | 
      result | 
      district_id | 
    
  
  
    
      | 48 | 
      71-Tétreaultville | 
      3694 | 
      2589 | 
      3454 | 
      9737 | 
      Coderre | 
      plurality | 
      71 | 
    
    
      | 49 | 
      72-MaisonneuveLongue-Pointe | 
      2746 | 
      3250 | 
      3139 | 
      9135 | 
      Bergeron | 
      plurality | 
      72 | 
    
    
      | 50 | 
      73-Hochelaga | 
      1546 | 
      3679 | 
      2675 | 
      7900 | 
      Bergeron | 
      plurality | 
      73 | 
    
    
      | 51 | 
      74-Louis-Riel | 
      3509 | 
      2178 | 
      2338 | 
      8025 | 
      Coderre | 
      plurality | 
      74 | 
    
    
      | 52 | 
      81-Marie-Clarac | 
      6591 | 
      1085 | 
      1435 | 
      9111 | 
      Coderre | 
      majority | 
      81 | 
    
    
      | 53 | 
      82-Ovide-Clermont | 
      6229 | 
      780 | 
      1051 | 
      8060 | 
      Coderre | 
      majority | 
      82 | 
    
    
      | 54 | 
      91-Claude-Ryan | 
      996 | 
      643 | 
      423 | 
      2062 | 
      Coderre | 
      plurality | 
      91 | 
    
    
      | 55 | 
      92-Joseph-Beaubien | 
      540 | 
      833 | 
      592 | 
      1965 | 
      Bergeron | 
      plurality | 
      92 | 
    
    
      | 56 | 
      93-Robert-Bourassa | 
      446 | 
      465 | 
      419 | 
      1330 | 
      Bergeron | 
      plurality | 
      93 | 
    
    
      | 57 | 
      94-Jeanne-Sauvé | 
      491 | 
      698 | 
      489 | 
      1678 | 
      Bergeron | 
      plurality | 
      94 | 
    
  
  
 
experiment
  
    
       | 
      experiment_1 | 
      experiment_2 | 
      experiment_3 | 
      gender | 
      group | 
    
  
  
    
      | 90 | 
      100.177493 | 
      104.673700 | 
      73.250996 | 
      male | 
      treatment | 
    
    
      | 91 | 
      108.151672 | 
      137.994359 | 
      105.054792 | 
      female | 
      treatment | 
    
    
      | 92 | 
      101.320525 | 
      105.711291 | 
      73.730844 | 
      male | 
      control | 
    
    
      | 93 | 
      99.177558 | 
      88.570729 | 
      78.655041 | 
      female | 
      control | 
    
    
      | 94 | 
      102.770625 | 
      129.002274 | 
      52.111122 | 
      male | 
      treatment | 
    
    
      | 95 | 
      108.156964 | 
      105.971541 | 
      64.524029 | 
      female | 
      treatment | 
    
    
      | 96 | 
      91.739992 | 
      111.125377 | 
      64.260993 | 
      male | 
      control | 
    
    
      | 97 | 
      95.410347 | 
      84.448322 | 
      75.505991 | 
      female | 
      control | 
    
    
      | 98 | 
      106.362406 | 
      115.522382 | 
      123.469689 | 
      male | 
      treatment | 
    
    
      | 99 | 
      94.269237 | 
      104.651064 | 
      92.387490 | 
      female | 
      treatment | 
    
  
  
 
gapminder
  
    
       | 
      country | 
      continent | 
      year | 
      lifeExp | 
      pop | 
      gdpPercap | 
      iso_alpha | 
      iso_num | 
    
  
  
    
      | 1694 | 
      Zimbabwe | 
      Africa | 
      1962 | 
      52.358 | 
      4277736 | 
      527.272182 | 
      ZWE | 
      716 | 
    
    
      | 1695 | 
      Zimbabwe | 
      Africa | 
      1967 | 
      53.995 | 
      4995432 | 
      569.795071 | 
      ZWE | 
      716 | 
    
    
      | 1696 | 
      Zimbabwe | 
      Africa | 
      1972 | 
      55.635 | 
      5861135 | 
      799.362176 | 
      ZWE | 
      716 | 
    
    
      | 1697 | 
      Zimbabwe | 
      Africa | 
      1977 | 
      57.674 | 
      6642107 | 
      685.587682 | 
      ZWE | 
      716 | 
    
    
      | 1698 | 
      Zimbabwe | 
      Africa | 
      1982 | 
      60.363 | 
      7636524 | 
      788.855041 | 
      ZWE | 
      716 | 
    
    
      | 1699 | 
      Zimbabwe | 
      Africa | 
      1987 | 
      62.351 | 
      9216418 | 
      706.157306 | 
      ZWE | 
      716 | 
    
    
      | 1700 | 
      Zimbabwe | 
      Africa | 
      1992 | 
      60.377 | 
      10704340 | 
      693.420786 | 
      ZWE | 
      716 | 
    
    
      | 1701 | 
      Zimbabwe | 
      Africa | 
      1997 | 
      46.809 | 
      11404948 | 
      792.449960 | 
      ZWE | 
      716 | 
    
    
      | 1702 | 
      Zimbabwe | 
      Africa | 
      2002 | 
      39.989 | 
      11926563 | 
      672.038623 | 
      ZWE | 
      716 | 
    
    
      | 1703 | 
      Zimbabwe | 
      Africa | 
      2007 | 
      43.487 | 
      12311143 | 
      469.709298 | 
      ZWE | 
      716 | 
    
  
  
 
iris
  
    
       | 
      sepal_length | 
      sepal_width | 
      petal_length | 
      petal_width | 
      species | 
      species_id | 
    
  
  
    
      | 140 | 
      6.7 | 
      3.1 | 
      5.6 | 
      2.4 | 
      virginica | 
      3 | 
    
    
      | 141 | 
      6.9 | 
      3.1 | 
      5.1 | 
      2.3 | 
      virginica | 
      3 | 
    
    
      | 142 | 
      5.8 | 
      2.7 | 
      5.1 | 
      1.9 | 
      virginica | 
      3 | 
    
    
      | 143 | 
      6.8 | 
      3.2 | 
      5.9 | 
      2.3 | 
      virginica | 
      3 | 
    
    
      | 144 | 
      6.7 | 
      3.3 | 
      5.7 | 
      2.5 | 
      virginica | 
      3 | 
    
    
      | 145 | 
      6.7 | 
      3.0 | 
      5.2 | 
      2.3 | 
      virginica | 
      3 | 
    
    
      | 146 | 
      6.3 | 
      2.5 | 
      5.0 | 
      1.9 | 
      virginica | 
      3 | 
    
    
      | 147 | 
      6.5 | 
      3.0 | 
      5.2 | 
      2.0 | 
      virginica | 
      3 | 
    
    
      | 148 | 
      6.2 | 
      3.4 | 
      5.4 | 
      2.3 | 
      virginica | 
      3 | 
    
    
      | 149 | 
      5.9 | 
      3.0 | 
      5.1 | 
      1.8 | 
      virginica | 
      3 | 
    
  
  
 
medals
  
    
       | 
      nation | 
      medal | 
      count | 
    
  
  
    
      | 0 | 
      South Korea | 
      gold | 
      24 | 
    
    
      | 1 | 
      China | 
      gold | 
      10 | 
    
    
      | 2 | 
      Canada | 
      gold | 
      9 | 
    
    
      | 3 | 
      South Korea | 
      silver | 
      13 | 
    
    
      | 4 | 
      China | 
      silver | 
      15 | 
    
    
      | 5 | 
      Canada | 
      silver | 
      12 | 
    
    
      | 6 | 
      South Korea | 
      bronze | 
      11 | 
    
    
      | 7 | 
      China | 
      bronze | 
      8 | 
    
    
      | 8 | 
      Canada | 
      bronze | 
      12 | 
    
  
  
 
  
    
       | 
      nation | 
      gold | 
      silver | 
      bronze | 
    
  
  
    
      | 0 | 
      South Korea | 
      24 | 
      13 | 
      11 | 
    
    
      | 1 | 
      China | 
      10 | 
      15 | 
      8 | 
    
    
      | 2 | 
      Canada | 
      9 | 
      12 | 
      12 | 
    
  
  
 
stocks
  
    
       | 
      date | 
      GOOG | 
      AAPL | 
      AMZN | 
      FB | 
      NFLX | 
      MSFT | 
    
  
  
    
      | 95 | 
      2019-10-28 | 
      1.155603 | 
      1.461829 | 
      1.457474 | 
      1.036232 | 
      1.365827 | 
      1.629663 | 
    
    
      | 96 | 
      2019-11-04 | 
      1.189743 | 
      1.486514 | 
      1.452951 | 
      1.021354 | 
      1.388495 | 
      1.655063 | 
    
    
      | 97 | 
      2019-11-11 | 
      1.211063 | 
      1.518629 | 
      1.415209 | 
      1.044153 | 
      1.404972 | 
      1.700533 | 
    
    
      | 98 | 
      2019-11-18 | 
      1.175199 | 
      1.495886 | 
      1.420278 | 
      1.064062 | 
      1.478547 | 
      1.696224 | 
    
    
      | 99 | 
      2019-11-25 | 
      1.183927 | 
      1.527143 | 
      1.465089 | 
      1.079154 | 
      1.498452 | 
      1.716521 | 
    
    
      | 100 | 
      2019-12-02 | 
      1.216280 | 
      1.546914 | 
      1.425061 | 
      1.075997 | 
      1.463641 | 
      1.720717 | 
    
    
      | 101 | 
      2019-12-09 | 
      1.222821 | 
      1.572286 | 
      1.432660 | 
      1.038855 | 
      1.421496 | 
      1.752239 | 
    
    
      | 102 | 
      2019-12-16 | 
      1.224418 | 
      1.596800 | 
      1.453455 | 
      1.104094 | 
      1.604362 | 
      1.784896 | 
    
    
      | 103 | 
      2019-12-23 | 
      1.226504 | 
      1.656000 | 
      1.521226 | 
      1.113728 | 
      1.567170 | 
      1.802472 | 
    
    
      | 104 | 
      2019-12-30 | 
      1.213014 | 
      1.678000 | 
      1.503360 | 
      1.098475 | 
      1.540883 | 
      1.788185 | 
    
  
  
 
tips
  
    
       | 
      total_bill | 
      tip | 
      sex | 
      smoker | 
      day | 
      time | 
      size | 
    
  
  
    
      | 234 | 
      15.53 | 
      3.00 | 
      Male | 
      Yes | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 235 | 
      10.07 | 
      1.25 | 
      Male | 
      No | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 236 | 
      12.60 | 
      1.00 | 
      Male | 
      Yes | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 237 | 
      32.83 | 
      1.17 | 
      Male | 
      Yes | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 238 | 
      35.83 | 
      4.67 | 
      Female | 
      No | 
      Sat | 
      Dinner | 
      3 | 
    
    
      | 239 | 
      29.03 | 
      5.92 | 
      Male | 
      No | 
      Sat | 
      Dinner | 
      3 | 
    
    
      | 240 | 
      27.18 | 
      2.00 | 
      Female | 
      Yes | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 241 | 
      22.67 | 
      2.00 | 
      Male | 
      Yes | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 242 | 
      17.82 | 
      1.75 | 
      Male | 
      No | 
      Sat | 
      Dinner | 
      2 | 
    
    
      | 243 | 
      18.78 | 
      3.00 | 
      Female | 
      No | 
      Thur | 
      Dinner | 
      2 | 
    
  
  
 
wind
  
    
       | 
      direction | 
      strength | 
      frequency | 
    
  
  
    
      | 118 | 
      SE | 
      6+ | 
      0.05 | 
    
    
      | 119 | 
      SSE | 
      6+ | 
      0.05 | 
    
    
      | 120 | 
      S | 
      6+ | 
      0.05 | 
    
    
      | 121 | 
      SSW | 
      6+ | 
      0.10 | 
    
    
      | 122 | 
      SW | 
      6+ | 
      0.10 | 
    
    
      | 123 | 
      WSW | 
      6+ | 
      0.10 | 
    
    
      | 124 | 
      W | 
      6+ | 
      0.90 | 
    
    
      | 125 | 
      WNW | 
      6+ | 
      2.20 | 
    
    
      | 126 | 
      NW | 
      6+ | 
      1.50 | 
    
    
      | 127 | 
      NNW | 
      6+ | 
      0.20 |